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Abstract
This paper explores the application of classical molecular dynamics to the computation of the
heat of transport of Au atoms in a model of solid gold at several elevated temperatures above
the Debye temperature. It is assumed that the solid shows vacancy disorder. The work shows
that to obtain consistent and reliable results it is necessary (a) to use very small time steps
(≈1 fs) in the molecular dynamics integration routine and (b) to take averages over a very large
number of vacancy displacements—a number which varies with temperature but which is of the
order of 105.

The results for the reduced heat of transport for the Au atoms show that: (1) it is positive in
sign, i.e. that the diffusion of Au atoms in a temperature gradient is biassed towards the cold
region or equivalently that the vacancies tend to migrate towards the hotter region; (2) it is
predicted to fall as the average temperature increases and that the variation is closely linear in
(1/T ); (3) its value at high T relative to the energy of activation for vacancy movement is close
to the corresponding ratio of experimental quantities. Analysis of these results indicates that the
method and model may allow reliable predictions for other metals having the face centred cubic
structure.

1. Introduction

The phenomenology of atomic transport in a temperature
gradient is subject to a number of minor variations. Here we
shall use a description which is based on the thermodynamics
of irreversible processes (see, for example, Allnatt and Lidiard
1993, Flynn 1972, Philibert 1991, Shewmon 1989). In this the
effect of the temperature gradient on the migration of atoms is
characterized by a parameter called the heat of transport, often
denoted by Q∗. For example, in the simplest case the flux of a
species in a solution, fluid or solid, is given by

Jk = −Lk

[
T ∇

(μk

T

)
+ Q∗

k∇T

T

]
(1)

in which μk is the chemical potential of the species k and Q∗
k

is the corresponding heat of transport. It is often convenient to
work instead with the alternative, but equivalent, expression

Jk = −Lk

[
(∇μk)T + (

Q∗
k − hk

) ∇T

T

]
(2)

in which (∇μk)T denotes that part of the gradient of chemical
potential due to gradients in pressure and concentration but not
temperature. The quantity Q∗′

k given by

Q∗′
k = Q∗

k − hk (3)

where hk is the partial enthalpy of k is called the reduced
heat of transport (see e.g. Allnatt and Lidiard 1993). These
heat of transport parameters determine effects such as
thermodiffusion, the Ludwig–Soret effect in solutions and
thermoelectric effects in ionic conductors. Such effects can be
of substantial importance in various experimental and practical
situations, while experimental studies have been conducted on
metals, alloys and ionic crystals (see e.g. Allnatt and Chadwick
1967, Wever et al 1973, Janek et al 2002). In general, atomic
transport in solids has been well interpreted in terms of the
theory of mobile point defects—vacancies and interstitials—
in these systems, so the theoretical problem reduces to that
of understanding the heats of transport of the relevant mobile
defects.
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The calculation of heats of transport in terms of other
properties of the systems of interest has therefore long
presented a challenge to theorists. Although there have been
many discussions of this problem over the years and some
salient features may have been identified, little real progress
towards a predictive, quantitative theory for solids can be
said to have been made until recent years. In particular,
the understanding of the heat of transport of defects in
terms of interatomic interactions bears no comparison with
the calculation of other defect properties in solids (see, for
example, Harding 1990 and Doan 1988). However, an
approach proposed originally by Gillan and Finnis (1978)
and by Gillan (1983), but limited to 0 K, was extended later
to non-zero temperatures by Jones et al (1996, 1997, 1999)
who made a series of calculations for vacancies by means
of molecular dynamics simulations, mainly of a Lennard-
Jones model of solid Ar. That system was chosen in view
of previously published work on the properties of vacancies
in it which allowed important checks on the accuracy of the
calculations (Becker and Hoheisel 1982 and Vogelsang and
Hoheisel 1986, 1987a, 1987b). This work led to a number
of general conclusions, one of which was the temperature
dependence of the vacancy heat of transport.

The present paper is a continuation of that work but carried
out on an interatomic potential model of Au. There are several
reasons for this choice. One is that several experimental
measurements of the vacancy heat of transport in Au have
been made and are in substantial agreement with one another
(Jaffe and Shewmon 1964, Meechan and Lehman 1962 and
Mock 1969). A second is that estimates of the electronic
contribution to Q∗ by the method of Gerl (1967) indicated
it to be relatively small (see also Wever et al 1973). We
are therefore here concerned only with the contribution from
atomic movements. Our approach is essentially the same as
that described in detail in the previous paper (Jones et al
1999) and we therefore refer the reader to that for a full
description of the basic computational method. However,
to avoid any confusion we note here that our method, since
it derives from the Green–Kubo approach to the calculation
of transport coefficients from averages of time–correlation
functions in a system in thermal equilibrium, uses isothermal
molecular dynamics, not non-equilibrium molecular dynamics
(NEMD), sometimes used for analogous problems in fluids
(see e.g. Hoheisel and Vogelsang 1988). As proposed by Gillan
and Finnis (1978) and analysed more fully by Allnatt (2001)
we can obtain the heat of transport, Q∗

k from the isothermal
relation

Jq = Q∗
k Jk (4)

by representing the matter flux of species k, Jk , in terms of
discrete atomic jumps and by obtaining the accompanying heat
flux, Jq , by molecular dynamics. This proposal was made
feasible by a device for handling rare, thermally activated
events in molecular dynamics which had been suggested earlier
by Bennett (1975) and used subsequently in other applications
(e.g. Gillan et al 1987). The macroscopic heat current is then
obtained by averaging the corresponding atomic dynamical
variable, which for atoms interacting via a central pairwise

potential is (Irving and Kirkwood 1950)

Jq(t) =
∑
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in which ri and vi are the position and velocity of the atom i ,
I is the unit tensor and φ(|ri − r j |) is the central interatomic
potential of the interaction of atoms i and j . As we see, this
heat current is made up of three terms: the first is a current
of kinetic energy, the second is a current of potential energy
and the third is a current of a virial of the forces (although this
tensor quantity is not the usual virial of Clausius). This third
term can also be regarded as a current of energy deriving from
the work done on atoms i by the movements of atoms j since
the Cartesian tensor quantity

σ
αβ

j ≡ 1

2va

∑
i �= j

(ri − r j)
α(ri − r j)

β

|ri − r j |
∂φ(|ri − r j |)

∂ri

may be used to represent the αβ-component of the local stress
at the position of atom j (see e.g. Born and Huang (1954),
especially section 11). (Here va is the volume per atom.) This
term proves generally to be the computationally intensive part
of the calculated current.

The important quantity is then the average heat current in
the direction of the atom jump, i.e.

q(t) = 〈
e0 · Jq (t)

〉
(6)

in which e0 is the unit vector in the jump direction,
i.e. 1√

2
(1, 1, 0) for movements between nearest neighbour sites

in the fcc lattice. The angular brackets denote an average over
all successful jumps of the atom into the vacant site, i.e. over
all trajectories of the system leading to a net displacement in
the defined hopping direction. (For the circumstances of the
present calculations the unsuccessful jumps amount to about
15% of the total.) Thus q(t) is the average heat current per
single atom jump at time t after the atom passes through the
transition state. Finally, the heat of transport of the atom
jumping into the vacancy, as derived by Gillan (1977), is

Q∗
G = 2

s

∫ ∞

0
q (t) dt (7)

in which s is the jump distance, i.e. the nearest neighbour
separation. The corresponding value for the vacancies is
the negative of (7). This relation provides the basis for the
computations reported here.

The plan of this paper is as follows. In the next section we
describe a number of other details relating to these calculations
This section also emphasizes that the heat flow directly given
by the method of Gillan and Finnis (1978) is relative to
the centre of mass of the solid and that this has to be
corrected to give the required flow relative to the crystal lattice.
Section 3 describes our results further and section 4 gives our
conclusions.
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2. The present calculations

The broad objectives of our work are twofold. One is to obtain
guidance on the dependence of Q∗ upon physical parameters,
such as pressure, temperature, lattice structure, interatomic
forces, etc. However, previous work, both published and
unpublished, has indicated that some of the results can be
sensitive to certain unavoidable artefacts of the method, e.g. the
number of distinct trajectories to obtain the necessary averages
over defect jumps, the time step used in the integration of
the equations of motion of the atoms in the solid, the size of
the periodicity volume, etc. A second objective is to remove
such inaccuracies and uncertainties in the method. The present
paper therefore sets out to describe our understanding of the
method by obtaining accurate results against a small number of
variables. At the same time we shall compare our predictions
against the known experimental results for Au.

In this section we first describe the potential energy
function of the physical model and then some aspects of
the computation of the heat of transport. As the atomic
model we chose a two-body potential model of Au due to
Cherns et al (1977) and Gillan and Finnis (1978), which is
a modified Morse potential originally constructed to represent
the sputtering of Au atoms by high energy ion beams (see the
appendix). Its form, i.e. its short range and simple two-body
character is advantageous for our purposes partly because it
avoids the relatively long tail of the Lennard-Jones model of
argon used in earlier work. It is stable in the fcc lattice and
we have been able to obtain its lattice vibrational structure
and derived quantities such as the density of phonon states.
The results agree in general form with others obtained for
fcc lattices made up of atoms interacting via two-body central
force potentials, but of, course, these do not show the high
energy shoulder on the phonon distribution which derives
from electronic effects. In addition, the values of the heat of
formation and heat of activation for vacancies in this model
at 0 K are known in terms of the well-depth parameter, φ0

(Gillan and Finnis 1978). An important advantage of the model
is that our results for the heat of transport can also be scaled
in terms of φ0. Now Cherns et al (1977) fixed this parameter
by the cohesive energy of Au since their aim was to model
sputtering experiments, whereas it has long been known that
in metals such a procedure leads to overestimates of vacancy
formation energies. In particular, with the value of φ0 assigned
by them (0.638 eV) the values for the vacancy formation and
migration energies (6φ0 and 4.14φ0 respectively) would be
unreasonably large compared to the observed values. Since
our results can be scaled to give the heat of transport as a ratio
to φ0 we can therefore fix φ0 by the observed value of other
more appropriate quantities, e.g. the vacancy migration energy
(0.83 eV,3 Flynn 1972) rather than the cohesive energy when
we want absolute predictions.

The molecular dynamics method of our calculations uses
a simulated microcanonical ensemble with constrained starting
configurations corresponding to particular temperatures fol-
lowing the original scheme of Bennett (1975). This has been

3 We should stress that the experimental values quoted in this paper are
probably not accurate to better than a few one-hundredths of an eV.

described in detail previously (Jones et al 1999). For a recent
fundamental analysis of the method see Allnatt (2001). The
computation proceeds by first obtaining the quantity (5) and
then the heat of transport in the centre of mass frame from (7).
Equivalently, since we are here dealing with a pure metal, the
heat of transport of the vacancies is the negative of that for the
atoms. These are of course classical mechanical calculations
and although we can obtain results for temperatures less than
the Debye temperature we cannot expect them to be valid there.
The results reported here are thus all for temperatures greater
than the Debye temperature, approximately 360 K, whether
we use the Cherns et al parameters (360 K) or ours. (N.B.
the experimentally determined melting temperature of gold is
1338 K, Emsley (1991).)

Some particular details should be noted. Firstly the
motion of the jumping atom must be described relative to its
surroundings in the lattice. This is done by introducing a
‘reaction coordinate’, commonly taken to be a linear function
of the Cartesian coordinates of the hopping atom and of those
four atoms which in the fcc lattice make up the ‘gateway’
through which the jumping atom must pass in order to get to
the vacant site; see equation (3) of Jones et al (1999). We have
made all the calculations described here with this choice, but
tests of other choices indicate no significant differences in the
results.

Secondly, we take the periodicity volume to be cubic
and here we shall describe results for a periodicity volume
including 108 lattice sites, of which the central site is vacant.
Although relatively small it allows us to verify various details
of the model accurately without excessive computer demands.

Thirdly, several temperatures were chosen in the range
300–1400 K. It should be noted, however, that the temperatures
chosen for the initial constrained system will be lower than
those of the corresponding final system because the excess
potential energy associated with the constraint is distributed
throughout the system as both potential and kinetic energy
when the constraint is removed, the additional kinetic energy
leading to a rise in temperature. When we specify temperatures
in our results these are final temperatures in every case.

Fourthly, on average in the fcc lattice, vacancy movements
occur in 〈110〉 directions by the jumps of neighbouring
atoms into the vacant site as a result of thermal activation.
Consequently for atom jumps in a particular [110] direction
we expect the average associated heat current also to be
in the [110] direction and the average heat current in the
perpendicular, [001], direction to be zero. The heat current
associated with any particular atomic jump is highly oscillatory
as a function of time and it is necessary to take averages over
very many jumps to obtain consistent results. Better averages
and better constancy on the total energy and momentum (equal
to zero) are obtained with smaller time steps. The time step
used with the present results was 1 fs. We found that larger
time steps gave notably less satisfactory results. Energy and
momentum conservation were then good to one part in 105.

3. Heat currents and heat transfer

The two principal parts of our results are (i) the average heat
current per thermally activated atom jump into a vacancy, q(t),

3
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Figure 1. The three components of the heat of transport, at 600 K
(averaged over 140 K trajectories).

Figure 2. Kinetic, potential and virial contributions to the heat of
transport at 600 K (averaged over 140 K trajectories).

and (ii) the time integral of this quantity, i.e. the average total
heat transfer per atom jump which yields the heat of transport,
Q∗

G by (7). We present results for a temperature of 600 K
to illustrate the important features of the behaviour we have
found.

Firstly, figure 1 for the average heat current q(t) shows
the breakdown into the contributions from the three terms
kinetic, potential and virial in the expression (5). It will be
seen that the kinetic and potential contributions decay to zero
quite quickly after reaching their maximum values whereas the
virial contribution decays notably more slowly. This difference
is reflected in their time integrals: the kinetic and potential
parts reach asymptotic values within times of the order of 1 ps,
whilst the virial part only does so after considerably longer
(∼10 ps). This is shown in figure 2. The consequence is that
the greater part of the time integral (7) comes from the virial
term in (5).

This dominance of the virial term also appears when
we look at the convergence of the average heat transfer as
a function of the number of independent trajectories used to
obtain these averages. Figure 3 shows this convergence up to
140 000 trajectories. It can be seen that this number is adequate
to yield a well-defined limiting value at long times. However,
averages taken over small numbers of trajectories do not give a

Figure 3. The variation of the heat of transport with number of
trajectories, at 600 K.

Figure 4. The contributions to the heat of transport from the heat
currents in the [100], [010] and [001] directions (averaged over
140 K trajectories at 600 K).

sufficiently smooth long-time behaviour to allow an asymptotic
value of the integral to be inferred—behaviour which again
results from the dominance of the virial contribution. We
earlier remarked on the expected spatial symmetry of the
Cartesian components of the average 〈Jq〉. Figure 4 shows
that these expectations are confirmed. With the atomic jump
direction as [110] we find that the average heat currents in the
directions [100] and [010] are closely equal while that in the
perpendicular direction [001] is close to zero. In other words
the average heat flow in these simulations is overwhelmingly in
the same direction as the atomic displacements. We emphasize
that these features are only accurately confirmed when the
averages are taken over many thousands of transitions.

To summarize these features:

(i) The major contributor to the average heat current and its
time integral the heat transfer, comes from the virial term
in (5).

(ii) Averages have to be taken over many thousands of atomic
jumps to obtain smooth and consistent results for the heat
transfer even for simulations corresponding to many tens
of ps.

4
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(iii) Fluctuations in the average heat transfer are greater when
longer time steps are used in the routine for integrating the
equations of motion in the m.d. simulation. We found that
1 fs was satisfactory but that with larger values, e.g. 5 fs,
it was more difficult to obtain consistent results.

(iv) When the conditions for smooth and consistent results are
met the expected spatial symmetry of 〈Jq〉 is found.

(v) The conditions for smooth and consistent results
depend upon circumstances; in particular they are more
demanding at higher temperatures and less so at lower
temperatures.

4. Comparison with experimental results

From the computational results like those presented in
figures 1–4 we can obtain the predicted heats of transport.
Experimental results on pure metals have mostly been obtained
from measurements of the shift of markers fixed in the
atomic lattice of specimens held in a temperature gradient
(see e.g. Meechan and Lehman 1962, Jaffe and Shewmon
1964, Mock 1969). In these experiments the directly measured
quantity on account of the gradient in vacancy concentration
is Q∗′ − hfv where Q∗′ is the reduced heat of transport of the
atoms and hfv is the heat of formation of the vacancies, known
from other experiments. Sometimes this combined quantity
is called the effective heat of transport. When hfv is taken to
be 0.94 eV (Simmons and Balluffi 1962) the values of Q∗′
obtained from these experiments on Au range from 0.59 to
0.80 eV, reasonably consistent in view of the difficulty of these
experiments. We emphasize that these are the reduced heat of
transport for the Au atoms in the solid Au lattice.

Our computed results can be presented in several ways
(table 1). Firstly we have the values of the expression (7) for
the five temperatures of these computations. By the constraints
imposed on the molecular dynamics these values correspond
to motion of the Au atoms relative to the centre-of-mass of
the system, whereas the experimental measures correspond to
motion relative to the crystal lattice. The quantities obtained
from (7) must therefore be corrected as follows

Q∗
l = Q∗

G + u,

where, in this constant volume system, u is the internal energy
per atom, equal to −6φ0 in this bond model solid (see, for
example, Jones et al 1997). (In a constant pressure system
the addition would be the enthalpy per atom, h.) However,
to obtain the reduced heat of transport per atom from Q∗

l we
must subtract u (h in a constant pressure system) cf (3). The
end result is thus that we should compare Q∗

G directly with the
measured reduced heat of transport, Q∗′. This can be done
from the values given in column 2 of table 1, from which
it will be seen that the computed quantities are considerably
larger than the experimental values, which range from 0.59 to
0.78 eV in the temperature range 1200–1300 K. The reason
for this we believe lies in the fact that the potential model of
Cherns et al (1977) specified in the appendix has been fitted
to the cohesive energy of gold. Now it is well known that
pair potentials fitted to the cohesive energy of metals generally

Table 1. The second column gives the reduced heat of transport
Q∗(=Q∗

G) in eV as obtained from equation (7) with the use of the
data in table A.1. The experimental values range from 0.59 eV (Jaffe
and Shewmon 1964) to 0.80 eV (Mock 1969). Column 3 gives the
ratio Q∗

G/hmv for our potential model, whilst the last column gives
the reduced heat of transport obtained from the calculate values in
the third column together with the experimental value of hmv

(0.83 eV, Flynn 1972).

T (K) (Q∗
G/eV )1 (Q∗

G/hmv) (Q∗
G/eV )2

370 9.3 3.5 2.9
600 5.8 2.2 1.8
730 3.9 1.5 1.2

1100 2.0 0.77 0.64
1440 1.2 0.46 0.38

overestimate vacancy formation energies and associated defect
quantities (see, for example, (Finnis and Sinclair 1984)). In the
present case fitting the model to the cohesive energy of gold
has thus overestimated the well-depth parameter φ0.

However, it is not difficult to show that all the basic
equations of the present computations can be put into a
dimensionless form by introducing the scaled variables for
mass (=m/mAu), distance (=r/r0) and energy (=E/φ0), with
corresponding scaled quantities for time, velocity, etc. Since
the mass of all atoms in these computations is the same and
equal to mAu and the nearest neighbour distance s(=r0) is also
a constant it follows that Q∗

G, being an energy, scales as φ0,
i.e. that Q∗

G/φ0 depends only on temperature. Thus if φ0 is
overestimated so is Q∗

G.
Now simple theories of the heat of transport have often

related it to the heat of activation of the vacancies hmv, which
for this model is known to be 4.14φ0 (Gillan and Finnis
1978). Column 3 in table 1 therefore shows the calculated
ratios Q∗

G/hmv, which is likewise independent of φ0. The
experimental values for this ratio range from 0.63 (Jaffe and
Shewmon 1964) to 0.96 (Mock 1969). This comparison
is much more meaningful and it shows that there is fair
agreement with the measured ratios at the temperatures of their
experiments which were conducted at 1200–1300 K.

If we now use the experimental value of hmv (0.83 eV
Mock 1969) to convert these predicted ratios of Q∗

G/hmv to
values of Q∗

G we obtain the values given in column 4 of table 1.
This is equivalent to choosing φ0 to give the correct values
of the vacancy migration energy (φ0 = 0.2eV ). It will be
seen that the values of Q∗

G in column 4 arrived at in this way
are in fair agreement with the values obtained experimentally.
We conclude therefore that reasonable values of the heat of
transport for defects in metals may be obtained with the method
we have used in conjunction with pair potentials when these are
fitted to defect energies rather than cohesive energies.

Table 1 shows that our results predict a distinct decrease
of Q∗

G, i.e. of the reduced heat of transport, with increasing
temperature. In figure 5 we plot Q∗

G against inverse
temperature. In fact the values of Q∗

G, in column four, as is
shown in figure 5, closely follow a linear function of the inverse
temperature over the range studied and this function is given by

(
Q∗

G/eV
) = 1.27 (1000/T/K ) − 0.49. (8)

5
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Figure 5. (Q∗
G eV−1)2 plotted against 1000/T .

The greater part of this variation with temperature derives
from the virial term in the average heat current (7) and reflects
the temperature sensitivity of its decay with time. By contrast,
the kinetic energy and potential contribution to Q∗

G are both
largely independent of temperature, a consequence of the rapid
decay of the corresponding parts of the average heat current.
These characteristics are similar to those found previously in
the studies of solid Ar and similar explanations apply here as
were presented by Jones et al (1999).

5. Conclusions

In this work we have explored two aspects of the calculation
of the heat of transport of defects in crystalline solids, the
first technical and the second physical implications. The
first concerns some technical aspects of the constrained
molecular dynamics method devised for simulating rare atomic
movements in solids (Bennett 1975). In the present case we
have used it to calculate the heat of transport of vacancy defects
in a model fcc solid. In particular, we have examined the size
of time step and the number of atom movements needed to
obtain clear and accurate results. Since the method involves a
two-stage computation, namely the preparation of an ensemble
of constrained configurations and the following unconstrained
dynamical calculation following passage of the atom over the
saddle point into the vacancy, it does not seem possible to
estimate the necessary time step and necessary number of
trajectories on the basis of previous experience with more usual
molecular dynamics calculations. We have therefore had to
proceed more empirically. We have judged the quality of
our results (a) by the conformity of the average heat flux to
the expected spatial symmetry and (b) by the approach of the
integrated heat flux to its asymptotic value at long times after
the atom crosses the saddle point. For our system we found
that it was necessary to use a time step of 1 fs with averages
over some 100 000 atomic trajectories to obtain satisfactory
results for the heat of transport at elevated temperatures.
We have found no evidence that the requirements would be
significantly less severe in other systems. By these means we
have obtained accuracies significantly greater than that of any

Table A.1. Potential and simulation data (Cherns et al 1977).

mAu (kg) 3.27 × 10−25

r0 (m) 2.88 × 10−10

φ0 (eV) 0.638
α (m−1) 1.581 × 10−10

previous calculations of the heat of transport by the present or
other methods.

As to the physical implications, the decrease of the
reduced heat of transport with rising temperature is a definite
prediction of this work. Furthermore, the predicted ratios
of the reduced heat of transport to the activation energy for
vacancy migration at high temperatures for model Au match
the magnitude of the same ratio determined experimentally
in the same temperature range. Indeed our results go
someway to explaining the difference between the results of
different workers when the different temperature ranges of
their experiments are taken into account. Lastly we have
also shown that when the parameter φ0 in the potential model
is scaled by reference to the activation energy of vacancy
migration then the predicted absolute values of Q∗′

are close
to the experimental measures.
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Appendix. The interatomic potential

The form of the potential function and the parameters
employed were taken from Cherns et al (1977). namely

φ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ0 {exp [−2α (r − r0)] − 2 exp [−α (r − r0)]} ;
r < r0

−φ0 + 1
2γ (r − r0)

2 + 1

6
δ (r − r0)

3 ;
r0 < r < r1

0; r1 < r

with αr0 = 4.55. The function is continuous with continuous
first derivatives at r0. The constants γ , δ and r1 are chosen
(i) so that the second derivative of φ is also continuous at r0

and (ii) φ and its first derivative are both zero at r1(>r0) which
gives

r1 = r0 +
√

3

α

γ = 2α2φ0

δ = 4√
3
α3φ0

and the parameters are collected together in table A.1.
However it should be noted that it is convenient to

introduce the dimensionless energy variable E ′(≡E/φ0),
and distance variable r ′(≡r/r0) with the additional mass
variable m ′(≡m/mAu) from which the dimensionless time

6
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t ′(=(φ0/mr 2
0 )1/2t) and velocity v′(=(m/φ0)

1/2v) can be
derived. It is simple to show that all the relevant equations
have the same form in reduced units as in physical units.
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